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Long waves on inclined films at high Reynolds 
number 

By TH. PROKOPIOU, M. CHENG AND H.-C. CHANG 
Department of Chemical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA 
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At large Reynolds number (Re > lo), waves on inclined films grow rapidly 
downstream in both amplitude and wavelength to the extent that linear stability 
theory cannot adequately describe their velocity-wavenumber relationship. The 
wavelength increases indefinitely until solitary waves are formed very far 
downstream. In a recent experiment of Brauner & Maron (1982), this evolution to 
long waves is observed to occur by successive wavelength doubling. In this analysis, 
we develop a second-order integral boundary-layer approximation for long waves at 
intermediate Re of O ( E - ~ ) ,  where E is the dimensionless wavenumber scaled with 
respect to the film thickness. (A second-order theory is needed because it introduces 
important dissipation terms which allow periodic and solitary waveforms to exist 
when surface tension is negligible.) After showing that this model can adequately 
describe infinitesimal waves a t  inception, we verify the existence of solitary waves 
and long-wavelength periodic waves near the critical Reynolds number with a 
weakly nonlinear analysis. These finite-amplitude waves are then numerically 
continued into the more important high-Re and strongly nonlinear regions. It is 
shown that the solitary wave speed approaches 1.67 times the Nusselt velocity, and 
the thickness of the substrate film approaches 0.47 times the Nusselt film thickness 
at  large Re. These results are favourably compared to experimental data of Chu & 
Dukler (1974, 1975). We also confirm the period-doubling scenario of Brauner & 
Maron by showing that short finite-amplitude monochromatic waves are unstable to 
subharmonic instability. 

1. Introduction 
The stability of vertical and inclined films has traditionally been studied by a 

linear Om-Sommerfeld analysis (see the review by Lin 1983). While linear stability 
theory gives a reasonably accurate prediction of the critical conditions for the onset 
of waves, it is inadequate for developed finite-amplitude waves far downstream from 
the feed. Recent experiments by Alekseenko, Nakoryakov & Pokusaev (1985) and 
Brauner & Maron (1982) indicate that waves at inception near the entry are indeed 
well described by the linear theory. However, for conditions far from criticality 
where the linear growth rate is significant, these waves quickly grow in amplitude 
and wavelength as they travel downstream. Their content of Fourier modes also 
increases significantly until the waves become strongly asymmetric. Beyond an entry 
length of about 500 times the Nusselt film thickness, h, = (3 v&/g COS~);, where Q is 
the flow rate per unit span width and 0 is the inclination angle from vertical, the 
waves reach a permanent form and travel downstream without discernible changes 
in speed and shape. Moreover, if the Reynolds number, Re = uN h,/v (where uN = 
Q/hN = g cos 8hk/3v is the Nusselt velocity for the average velocity of a flat film), 
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FIGURE 1. Comparison of measured wave frequency of developed waves far downstream of the inlet 
by Brauner & Maron for water (0) to Yih's low-Re theory (11) and our integral boundary-layer 
theory (I) for the maximum-growing linear mode. The inclination angles are (a) 8 = 51' and (b) 
0 = 84'. The more horizontal inclination has a lower growth rate and has not evolved to the same 
extent. 

is smaller than 50 for vertical films to  500 for almost horizontal films, the waves 
remain approximately two-dimensional without much undulation in the cross- 
stream direction. That these developed waves cannot be described by linear stability 
theory is shown in figure 1 where Brauner & Maron's measured wave frequency for 
developed waves a t  51' and 84' from vertical is compared to linear predictions of the 
wave frequency for the maximum-growing linear mode. The theoretical curves 
include our linear stability theory for intermediate Reynolds number, which will be 
developed in the next section, and Yih's (1963) long-wave OrrSommerfeld result for 
small Reynolds numbers. Yih's theory predicts that the maximum-growing linear 
mode of a vertical film has a leading-order dimensionless frequency of k ,  c,/2n, 
where k ,  and c ,  are the maximum-growing wavenumber and its linear phase 
velocity : 

k ,  = [2(Re -i tan 8)/5Z]i, 
c, = 3 - [3 +yRe(Re -$  tan e)] k& ; 
Z = ;We Re - Q tan 0 +%Re + &Re tan2 @--Re2 tan 13 + 75075 151744Re3 , 

and the Weber number We is defined as alpukh,. (Note that Yih used the interfacial 
velocity as the characteristic velocity and his Weber number is also defined 
differently.) An order of magnitude discrepancy between data and theory is evident 
for some of the experimental conditions. Waves on the more horizontal incline, 
because of their smaller growth rate, do not evolve as much within the channel and 
have wave frequencies closer to  the linear waves. Note that the developed waves can 
also be excited by pulsing the feed rate. These artificially excited waves reach their 
permanent form immediately without an entry region. Alekseenko et al. do not 
observe any difference between the naturally and artificially excited finite-amplitude 
waves. It is interesting to note how the naturally excited waves which grow from 
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infinitesimal waves, evolve from the entry. Figure 9 of Brauner & Maron's (1982) 
paper presents the wave spectra for Re = 144 and 0 = 60" at various locations 
downstream. (Actually, the spectra of the mass transfer rate of a chemical species 
from the liquid to the solid bottom are measured. However, Brauner & Maron have 
experimentally demonstrated that these spectra are close to the wave spectra.) Near 
the entry, the small-amplitude waves show a maximum in their spectrum at 10 Hz 
which is close to the wave frequency of the linear maximum growing mode. However, 
the energy of the waves seems to shift to its subharmonic at 5 Hz and lower 
frequencies further downstream. This ' period-doubling ' phenomenon occurs again 
downstream until a 2.5 Hz frequency begins to dominate the spectrum of developed 
waves near the exit of their channel. The same phenomenon has also been observed 
by Choi (1977) in his experiments on sheared deep-water waves. 

For Reynolds numbers of order unity with respect to the parameter 8 = h,/L, 
where L is the characteristic length in the flow direction which is typically taken to 
be the wavelength of the waves such that E is the dimensionless wavenumber, finite- 
amplitude waves have been studied by Benney (1966), Lin (1969), Gjevik (1970) and 
Nakaya (1975). They generally carried out a weakly nonlinear analysis of the system 
near the neutral curve where monochromatic linear waves have zero growth rates. 
Also, only fundamental modes with small growth rates and, in certain cases, their 
first superharmonics are considered in deriving the Stuart-Landau equation for the 
amplitude of the wave. In a recent paper, Chang (1989) has demonstrated that the 
weakly nonlinear problem can yield finite-amplitude waves which contain many 
Fourier modes. This includes a solitary wave with a broad and continuous Fourier 
spectrum. These solitary waves have been numerically constructed by Pumir, 
Manneville & Pomeau (1983) and Nakaya (1989). Nakaya has proposed that even 
seemingly periodic interfacial waves are actually trains of equally spaced solitary 
waves. 

For intermediate Reynolds numbers of O( e-'), nonlinear analyses have been 
carried out by Shkadov (1967, 1968) and Lee (1969) who again considered only the 
first two harmonics of a periodic wave with small linear growth rates. To study 
strongly nonlinear waves with large mode content, it  is extremely difficult to tackle 
the complete equations of motion and the complex free-surface conditions. Instead, 
a long-wave expansion in E can be carried out to derive a much simpler evolution 
equation for the interface. For Reynolds number of order unity, as mentioned above, 
this expansion can be carried out formally (Benney 1966). Unfortunately, for 
intermediate Reynolds number of O( E - ~ ) ,  an approximate KBrmBn-Polhausen 
integral boundary-layer theory must be introduced. In this formulation, a velocity 
profile is imposed a priori after expanding the NavierStokes equation to leading 
order in 8. The O(E)  expansion with a flat velocity profile is essentially the shallow- 
water theory of Dressler (1949) and Stoker (1957). A numerical study by Brock 
(1970) indicates that continuous finite-amplitude waveforms do not exist for 
Dressler's shallow-water equations. To remedy this, Needham t Merkin (1984) have 
added an empirical second-order dissipation term to Dressler's equation to model 
'normal shear' and showed that periodic waveforms are now possible. Needham & 
Merkin (1986) and Hwang and Chang (1987) have shown that solitary waves with 
speeds close to 1 . 5 ~ ~  also exist for this modified shallow-water equation. However, 
the amplitudes of both the periodic and solitary waves are strongly dependent on an 
empirical viscosity parameter associated with the added dissipation term. Since this 
empirical viscosity is difficult to estimate, comparison against measured wave 
amplitudes and wavelengths is impossible. Recently, Alekseenko et al. (1985) have 
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imposed a parabolic velocity profile and derived an alternative evolution equation 
valid to O(s). Their data for vertical films and Bertschy, Chin & Abernathy’s (1983) 
measurements for inclined films indicate that this is a more appropriate profile for 
intermediate-Reynolds-number ( < 1000) flow sufficiently far from the entry. 
Although Alekseenko et al. have shown that the linearized version of their evolution 
equation yields excellent prediction of small-amplitude waves near inception and 
near onset, they did not attempt to construct finite-amplitude waveforms from their 
nonlinear equations. As we shall demonstrate, their first-order theory still does not 
allow the construction of finite-amplitude periodic waves because the second-order 
dissipation term sought by Needham & Merkin (1986) remains absent when surface 
tension is negligible. 

In  this paper, we extend Alekseenko et al.’s integral boundary-layer theory to 
second order in e .  In this higher-order resolution, the normal shear contribution, 
which Needham & Merkin (1984) have attempted to model empirically, is explicitly 
derived from the equations of motion. We then show by a weakly nonlinear analysis 
near criticality that, under O(e2) resolution, periodic and solitary travelling 
waveforms are indeed solutions to  the evolution equations. Our weakly nonlinear 
study includes a Melnikov analysis which yields a solitary wave and a family of 
periodic waves near onset. The waves close to the solitary waves contain a large 
number of Fourier modes which can never be modelled with a few harmonics. We also 
numerically continue these waveforms into the highly nonlinear and large-Reynolds- 
numbers region far away from criticality. It is shown by comparison to experimental 
data that the well-developed waves, such as the ones shown in figure 1, approach the 
solitary wave limit a t  large Reynolds number with wave frequencies much smaller 
than that corresponding to the linear maximum-growing mode. Since our theory 
does not involve any empirical terms, we are able to  compare our results to 
experimental data and show favourable agreement. This construction does not reveal 
the stability of these waveforms although experimental data clearly show a gradual 
downstream evolution to longer waves until the solitary wave limit is approached. 
To remedy this, we also study the evolution to  long waves, showing that short- 
wavelength periodic waves are unstable to  subharmonic instability which is 
consistent with Brauner & Maron’s ( 1982) experimental observation. The periodic 
waves are then sensitive to subharmonic disturbances, and a period-doubling cascade 
is an important component of the evolution to solitary waves. 

2. Shallow-water theory and linear stability 
Following integral boundary-layer theory, we shall derive the normally averaged 

evolution equations for the x-momentum and the kinematic condition. In  this model, 
the y-momentum balance is assumed to  be dominated by hydrostatic forces. Scaling 
the downstream coordinate x by the unknown wavelength L ,  the normal coordinate 
y by h,, the x-component velocity by u,, the y-component by e u,, pressure by pug 
and time by L/u,, the leading-order version of the equations of motion and the 
pertinent boundary conditions become 

-+u-+v- = 
au au au 
at ax ay 

- = - Fr sin 8, 
a Y  
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continuity 
au av 
ax ay 
-+- = 0, (3) 

no-slip y = o ,  u = v = o ,  (4) 

( 5 )  
ah ah 

y = h ,  - = v - u - ,  
at ax kinematic condition 

normal stress 

tangential stress 

2s av 
Re ay  p a - p + - -  = Wes2h , , ( l -&2h~) ,  

(7 )  

where pa is the constant air pressure and the following orders have been assigned to 
the parameters, corresponding to intermediate-Reynolds-number flow of common 
fluids : 

(8) 

(9 )  

(10) 

Re = uN h,/v = O(s-'), 

We = cr/pugh, = (3; Fii)/(Reicos@) = O ( P ) ,  

Fr  = ghN/ug = O(E), 

where We is the Weber number, Fi = a3/p3 gv4 is the film number, which is 
independent of the flow conditions, and Fr is the Froude number. The approximate 
Karman-Polhausen integral boundary-layer theory, which has been very suc- 
cessfully applied in airfoil analysis (von Karman 1921; Batchelor 1967), will be 
applied to the above equations. The key approximation is the assumption of a 
velocity profile to allow integration of the equations in the y-direction. As we shall 
demonstrate in the Appendix, this approximation is most appropriate for Re = 
O(6-l). We shall hence restrict ourselves to this order of Re. For low-Reynolds- 
number films, Re = 0(1), this a priori approximation of the velocity profile is not 
necessary and Yih's linear theory and the nonlinear analyses of Benney (1966), Lin 
(1969), Gjevik (1970) and Nakaya (1975), which involve a long-wave expansion of the 
velocity field and film height, are more appropriate. Also, if surface tension is small, 
We = O(s) or smaller, the curvature term on the right-hand side of ( 6 )  can simply be 
omitted such that surface tension does not enter the problem at all. This often occurs 
for very large-Reynolds-number flow with thick films. We also note that if O ( 2 )  
terms are omitted, the lower-order boundary-layer equations of Alekseenko et al. 
(1985) and Bertschy et al. (1983) are obtained. Bertschy et al. also included higher- 
order terms in their tangential stress balance. Note, however, that the normal shear 
term (2s/Re)(av/ay) in (6 )  is an O ( 8 )  term which only appears in this higher-order 
formulation. This term will give rise to an all-important dissipation term which is 
necessary for periodic and solitary waves to exist. 

Since L is unknown and is merely used in the scaling to correctly appoint the order 
of each term, we now absorb it by using h, as the characteristic length for both 
directions, uN as the characteristic velocities for both components and h,/u, as the 
characteristic time. The unknown L now disappears from the formulation and B 

becomes unity in all the equations. This version will be used in subsequent 
derivations. 

The KBrmBn-Polhausen integral boundary-layer theory involves the following 
manipulations. Integrating the kinematic equation (5 )  from y = 0 to the interface 

22-2 
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y = h, one obtains from the kinematic equation and Continuity equation the mass 
balance relationship, 

where 

ah aq 

q = r u d y  

_ -  - -- 
at ax' 

0 

is the local flow rate. Integrating the hydrostatic head of (2) of y = h to y and 
substituting the value of the liquid pressure at  y = h from the normal stress condition 
(6), an expression for the normal variation of the pressure is obtained. Upon 
substituting this into the x-momentum equation and again integrating over the film, 
one obtains the averaged x-momentum equations 

-+- a' a y) - =- i e l A y ( y  = h))dy+ We (hh,,,-%hh~h,,,-3hh,h~,) 
at ax h ax ax 

-(y = h), (13) 

where 

is the shape factor (Hanratty 1983) and 

is the wall shear. The continuity equation and the tangential stress condition have 
been used in deriving (13). 

A specific profile must now be imposed in this theory. For highly turbulent flow, 
a flat profile is usually assumed which yields a unity shape factor. However, for the 
flow of interest, Alekseenko et al. have experimentally established that a parabolic 
profile is more appropriate. Bertschy et al. found that this is true even at  much higher 
Reynolds numbers (Re > 5000) provided thatdhe waves are far from the entry. 
Consequently, we impose the following self-similar profile : 

It can be easily shown that (16) obeys 

The normal velocity v can also be derived from (16) but the only pertinent 
information is that awlax vanishes a t  the wall such that the wall shear is simply 

The parabolic profile also yields a shape factor of 1.2. Introducing these expressions 
into (13) yields the final averaged x-momentum equation 

r ,  = 3q/Re h2. (18) 

-+- a ("") - = kq,, + We(hh,,, - ihh; h,,, - 3hh, h;,) 
at ax h 

+Fr( h cos 8 - hh, sin 8) + 
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Two important terms due to the inclusion of the O(e2) normal shear term are the 
dissipation terms (5/Re) qzz and (6/Re) qh,,/h which do not appear in leading-order 
boundary-layer theory. If We is O(e)  or smaller, which occurs at high Re, the surface 
tension terms associated with We in (19) are negligible in the present resolution. This 
implies that without the dissipation terms, which contains second derivatives of q 
and h with respect to x, (19) is a nonlinear hyperbolic equation equivalent to the 
shallow-water equations of Dressler (1949) and Stoker (1957). As Brock (1970) has 
shown, such a hyperbolic equation does not allow periodic and solitary waveforms. 
Consequently, we have now explicitly derived the normal shear term empirically 
introduced by Needham & Merkin (1984) to obtain periodic and solitary waves. 

Equations (1 1) and (19) are then the evolution equations. From the definition of 
the dimensionless parameters, it  can be seen that 

3 
ReFrcos0 = " 

which explains the order assignment of (10). Also because of this, an obvious solution 
to (1 1) and (19) is the Nusselt flat-film solution 

Linearizing (1 1) and (19) about this base state and taking the partial derivative with 
respect to t for (11) and with respect to x for (19), one can eliminate the deviation 
variable for q and obtain a single equation for the deviation film height r] = h-  1 : 

3 
r]tt + 2*4r]zt + 1 a z z  +Re [ -ktm + 3% + rlt -tan 0 r z z  - 2r]zzzI+ Werlxzzz = 0. (22) 

Introducing the normal mode r ]  = exp [i(kx-ot)], where k is the wavenumber and w 
the wave frequency, to (22) yields the complex equation 

3 
Re 

-w2+2.4kw-l.2k2+-[2k2 wi+3ik-iw+tan0k2+2ik3]+ We k4 = 0. (23) 

We shall focus only on the temporal instability problem with k real and w complex. 
A simple manipulation of (23) yields that the condition for onset, where the first and 
second derivatives of Im{w} with respect to k vanish exactly, is located at  

Re, = tan8, Re{w}/k = 3, k, = 0. (24) 

Since our theory is more appropriate for Re = O(e-'), this prediction of the critical 
Reynolds number is only acceptable for almost horizontal films, tan0 = O(e-'). As 
expected, the low-Reynolds-number theory of Benjamin (1957) and Yih (1963) yields 
to leading order Re, = tan0 which is different from (24). We give in the Appendix 
the approximations invoked in the present theory that causes this deviation from the 
long-wave expansion for Re = O(1). 

In the neighbourhood of the critical Reynolds number where (Re - tan 0) = O( I), 
an expansion of (23) shows that one root is always stable, Im {w} < 0, while the more 
unstable one yields 

(25) 

(26) 

Re { w }  = 3k- 1.2 Re E3[(Re -tan 0) -l&e We k2] + O(e4), 

Im{w} = (Re-tan0) k2-l&e Wek4+O(e3), 
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FIGURE 2. comparison of our linear theory to the phase speed of small-amplitude waves near the 
inlet measured by Alekseenko et al. for the vertical film. Curve I corresponds to water with Fz* = 
9.54 and curve I1 is oil with Pi& = 1.72. Data for water are marked by crosses and for oil by 
triangles. The circles denote glycerin-water solution with FiA ranging from 5.42 to 6.78. 

where Re is of O(1) and We of O ( E - ~ )  in this expansion. A simple manipulation of (26) 
shows that there are two neutral linear modes with wavenumber zero and 

3(Re- tan 0)  

kn=[ ReWe 1 
and the maximum-growing linear mode is 

k m  = k J d 2  (28) 

It is also obvious from (25) and (26) that, near onset, waves with phase velocity c = 
Re{w}/k less than 3 are unstable while the ones travelling faster than thrice the 
Nusselt velocity are stable. The phase velocity also exhibits a minimum a t  k ,  near 
onset. These local results break down, however, for conditions far from onset, 
Re-Re, B 1 and numerical solution of (23)  must be carried out. In  figure 2, we 
compare the computed phase velocity of the maximum-growing mode of the vertical 
film against various literature data for infinitesimal waves near inception. The 
linearized second-order boundary-layer theory, despite the approximation made, 
seems to  adequately describe the phase velocity of these linear waves before they 
evolve downstream. However, as shown in figure 1, where the dimensional version of 
the wave frequency Re{w} of the maximum-growing mode k ,  is compared to the 
measured frequency of developed waves, the linear theory cannot describe finite- 
amplitude waves. Finally, we note that for a given fluid with a specified film number 
Fi,Re and the inclination angle 0 completely specify the system since the other 
parameters in (13), Fr and We, can be derived from (20) and (9), respectively. 
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3. Weakly nonlinear analysis 
Although the integral theory is not the best theory near criticality, Re =Re,,, 

except for nearly horizontal films, we carry out here an analysis near Re, to 
demonstrate that solitary waves can only exist with the dissipation term that we 
have derived from the second-order theory. Moreover, the speed of the solitary waves 
that we derived near criticality allows us to initiate a numerical continuation scheme 
to estimate the speed of solitary waves a t  large Re, away from criticality, which is 
normally a difficult numerical task. We shall also show that the normal shear terms 
(5/Re) qZz and (6/Re) qhzT/h in (19) of our second-order boundary-layer theory allow 
us to construct all periodm travelling waves near onset (Re - Re,,). Such waves travel 
at  a dimensionless velocity c without any variation in their shape. Consequently, we 
transform (11) and (19) into a moving frame by the transformation x+x-ct and 
omitting the time dependence in this new coordinate. Integrating the transformed 
(11)  once and using the condition that the Nusselt flat-film base state of (21) must 
be a solution for all c, one obtains the following relationship between the local flow 
rate and the film height for the travelling waves: 

Q = 1+c(h- l ) .  (29) 

Substituting (29) into the transformed (19) and expanding to second order in the 
deviation film height 7, one obtains 

rzzz = ~ 1 r + ~ z ~ z - $ ~ z z + ~ l r 2 + ~ 2 r r , + ~ a r ~ + ~ 4 r r z z + ~ ~ l r 1 3 ~ ~  (30) 

where 
3 

(c-31, p2=- /% =m 

1 
( 2 - ~ ) ,  a --(3.4 c'-7.2 ~ + 3 . 6 ) ,  

9 
a1 = - 

Re We - We 

3 
(c - l ) ,  a4 = - 

6 
Re We 

a3 = - Re We (%-4)' 

Equation (30) can be rewritten as a dynamical system of three first-order equations 

where u = ( ~ , T , I ~ , ~ ~ ~ )  and the overdot denotes a derivative with respect to x. The 
matrices Lo and L and the function f(u) are 

0 0 0  

0 0 -$ 

f(u) = a1 u: + a2 u1 u2+a,ui + a4 u1 u3. 

At the critical point of (24), p1 and p2 vanish exactly and the eigenvalues of the 
Nusselt fixed point, which has been moved to the origin in (31), are the eigenvalues 
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of Lo, { O , O ,  -4}. We shall apply the centre manifold projection and normal form 
techniques of bifurcation theory to study the dynamics of (31) near the critical point 
where ,ul = ,uz = 0. In particular, as we have pointed out for other related wave 
problems (Chang 1987 ; Hwang & Chang 1987 ; Chang 1989) we seek periodic orbits 
(limit cycles) and homoclinic orbits of (31) which correspond to periodic travelling 
waves and solitary waves. We first note here that the important normal shear term 
of our second-order boundary-layer theory contributes to the vzz term in (30). The 
parameter 4 vanishes exactly for a first-order theory. 

Equation (31) is first expanded about Re, = tan 8 and c = 3. In this expansion, we 
have isolated the dependence of We on the flow rate by using the identity We = 
(3 Fi/Re6 cos 8)i and stipulating Fi to be a constant for a given fluid. (In our expansion 
0 and Fi are held constant.) Omitting the detailed similarity transform, near-identity 
nonlinear transformation, centre manifold expansion and normal form analysis, 
which we have reported earlier for related problems (Hwang & Chang 1987; Chang 
1989), the dynamics of (31) near p1 = pz = 0 is described to leading order by the 
following Bogdanov-Arnold normal form (Cam 1981), provided that 4 does not 
vanish at ,ul = pz = 0 :  

where z - u+O(JpI Iu1, luI2) and the coefficients are 

+ 0.4 tan 8 (c - 3), 1 (3Fi/cos0); [ 27 (tan 8); 
v1 = :(c-3), vz = -;(Re-tanO)- 

b = $tan 8[(3Fi/cos @/(tan 8):+ 6.31. 

The transformation to (32) is only possible if the qzz term in (30) exists. This implies 
that a first-order boundary-layer theory like those of Dressler and Alekseenko et al. 
would not allow the transformation to (32). 

To study the dynamics of (32) for c < 3 (ul  < 0) ,  we carry out an additional 
transformation 

to transfer (32) to 
x+wJ, l t  ul-fvl(Y1-1), U2-f IVllfYZ 

Y; = yz+o(62), 

Y’z = Y1+ %-!A +6Yl Yz +o(62), 

6 = -blv,p, (7 = vz Iv,(-t+blv,p, (34) 

(33) 1 
where a prime denotes a derivative with respect to the new spatial coordinate z and 

where 6 and r are small and of order lvlli. (The neighbourhood of v2 is the same as that 
for vl, O(v,)  w O(vl) 4 1, and from the scaling we are restricted to small-amplitude 
waves when 7 - u1 = O( vl) .) 

At r = 6 = 0, which corresponds to a particular path of approaching the double- 
zero singularity of (24) as specified by (34), (33) becomes conservative and its level 
curves in the phase plane are given by the first integral 

These level curves describe a family of limit cycles parameterized by p as shown in 
figure 3. A t  B = 1, one approaches an infinitesimal limit cycle at  the fixed point 
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FIGURE 3. Level curves to (33) for c = 8 = 0. A homoclinic orbit at B = 0 encircles a family of 
periodic orbits parameterized by /? from 0 to 1. 

(y,,y,) = ( 1 , O )  which corresponds to the Nusselt base state of r] = T, I~ = 0. This then 
provides a closed-form expression for the solitary wave. 

A Melnikov analysis allows us to study the dynamics of (33) away from CT = S = 
0. In  particular, we seek a particular path away from the origin in the (S,S)-plane 
such that a member of the level curves in figure 3 remains intact. This is true for the 
level curve at parameter /3 if the Melnikov function M(@) vanishes exactly 
(Guckenheimer & Holmes (1983), 

where the integrals are carried out over the top half of the level curve at  /3 denoted 
by y,*(y,;P) which can be easily obtained from (35). Cam (1981) has analysed the 
integrals in (36) and discovered that the homoclinic level curve at /3 = 0 is invariant 
along the homoclinic line 

b 
C T = - + S  or v --v1 

-7 

or equivalently in the (Re - tan 0) ,  (c - 3)-parameter space 

Re-tan0 =-(5$/63+tanO) (c-3), (37) 

where $ = (3~i/cosO)t/(tan8)~. This then provides the speed of the solitary wave 
near criticality. The Hopf line where the limiting limit cycle a t  /3 = 1 remains 
invariant lies at 

n = - S  or vz =0 ,  
which is equivalent to 

Re-tan0 = -)($+10.8tanO) (c-3). (38) 

This actually corresponds to the speed of an infinitesimal wave at the neutral 
wavenumber near criticality, as we shall demonstrate in the next section. In the 
vertical limit (0-+0), both the homoclinic and Hopf lines are tangent to the (c-3)- 
axis. A second-order expansion in (Re-tan8) and (c-3) would be necessary to 
resolve these lines. 

The homoclinic and Hopf lines of (37) and (38) are plotted in the ((Re-Re,), (c-3))- 
parameter space in figure 4(a) .  Each line within the sector bounded by these two lines 
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FIGURE 4. The predicted range of periodic and solitary travelling waves near onset 

and their amplitudes and speeds. 

corresponds to a limit cycle with a /3-value between zero and one. We have hence 
established that a family of periodic travelling waves with wavespeed lower than 3 
and a solitary travelling wave, which bounds the periodic waves from below in speed, 
exist for conditions near onset. The ‘bifurcation scenario’ as c decreases below 3 
at a given Re is also schematically depicted in figure 4 ( b ) .  The periodic waves 
bifurcate supercritically from the Nusselt flat-film base state a t  the Hopf point and 
grow in amplitude until they hit the other ‘conjugate ’ flat-film base state for a 
homoclinic bifurcation. This conjugate flat-film base state, whose thickness varies 
with c, arises in many travelling wave problems (Benjamin 1984; Chang 1987 ; Zufiria 
1987; Hwang & Chang 1987; Chang 1989). Its thickness, represented by 7, is less 
than that of the Nusselt film for c < 3 as represented by the negative 7-value. In the 
present context, i t  can be easily seen from (19) and (29) that any flat-film solution 
satisfies 

which includes the Nusselt base state h* = 1 as a solution. However, for c > t, two 
other flat-film solutions exist. The thicker one bifurcates from the Nusselt base state 
in a transcritical simple bifurcation a t  c = 3 and is locally given by 5 (c-3), which is 
that depicted in the local scenario of figure 4 ( b ) .  

The amplitudes and wavelengths of all the periodic waves and the solitary wave 
can also be estimated from the elliptic integrals associated with the periods along the 
level curves in figure 3 (Chang 1989). However, such information is of no particular 
interest here. It should be pointed out, however, that  although we have carried out 
a weakly nonlinear analysis near onset, we have not limited ourselves to  a few 
Fourier harmonics. The Fourier content of the waves shown in figure 3 can be large. 
Indeed, the solitary wave should have a continuous range of Fourier modes. 

(h-1) (h2+h+1-C)  = O ,  (39) 

4. Strongly nonlinear waves 
When Re is much larger than Re,, the waves evolve rapidly downstream to form 

large-amplitude waves. Even for small Re -Re,, large-amplitude waves can be 
generated by artificially paddling the surface or pulsing the liquid feed rate. The fully 
nonlinear version of (19) and (30) must be analysed to study these large waves. 
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Carrying out the same manipulations as in the weakly nonlinear analysis but without 
the Taylor expansion in 7, the fully nonlinear dynamical system is now 

ti, = u,, ti, = u3, \ 

2.4cu2(l +cu,) 1.2U2(l + c u , ) z - ~ [  - @u3+ (1 +ul) 
1 +u, (1 + u,)’ Re 

-u, tan O( 1 +u,) + 2 4  1 + CU,) 
2cu; 2u3( 1 + CUJ - 

(1+u1)2 l + u ,  l + u ,  (1+u1)2 

3 4  u, 
-{We( 1 + ul)( 1 - $;)} +T. 

1 eiuz 
A particular characteristic of the finite-amplitude travelling shock wave can be 

immediately deciphered from (40). A shock wave must have vanishing derivatives of 
7 at both upstream and downstream limits. Consequently, 7 must approach the fixed 
points of (40) which are simply described by (39). If one specifies that one of the limits 
must be the Nusselt base state, then the other limit is given by 

h2+h+l-c = 0. 

This equation yields two solutions for c > f. However, in all our computations, the 
heteroclinic trajectories of (31), which corresponds to the shocks, connect the Nusselt 
base state and the thicker solution of this equation for c < 3. (For c > 1, the thinner 
solution even yields physically impossible solutions with h < 0.) Nevertheless, if one 
is not concerned with the exact profiles of the shock, the amplitudevelocity 
relationship of shocks is always given by 

C-3 = (h,-1)2+3(h,-1), 

where h, is the film thickness of the shock at the limit that does not correspond to 
the Nusselt thickness. The quantity (h,-1)  is simply the ‘jump’ of the shock. 
Alekseenko et al. have also arrived at the same condition for the vertical film from 
the first-order theory and show that their artificially generated shocks are very well 
described by this expression. 

The periodic and solitary waves, however, must be resolved with a second-order 
boundary-layer theory. We have carried out a weakly nonlinear analysis for Re near 
Re, in the previous section. Away from the critical condition, the leading-order 
expansion in Re-Re, and c-3 in the previous section to obtain the Hopf and 
homoclinic lines is invalid. The Hopf locus must now be determined from the 
characteristic polynomial of Lo+& in (31), 

A3 + A24 -pz h -#LA1 = 0, 

which indicates that the Hopf locus is located at 

PZ = P I 6  (41) 

and (38) is a local version of this general result. The homoclinic line and the periodic 
orbits between the Hopf and homoclinic loci corresponding to the speed a t  the 
neutral wavenumber and the solitary wave speed must now be computed 
numerically. For this purpose, we use a continuation program PEFLOQ (Aluko & 
Chang 1984) which traces the periodic orbits as a function of c while holding the other 
parameters constant. It is similar to the AUTO program developed by Doedel & 
Kernevez (1986). The homoclinic line for the solitary wave speed is also traced by our 
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FIGURE 5. Computed wave profiles for 8 = 80" and Re = 8 at various wavespeeds near the period- 
doubling points. The wavelength of each successive wave is hence approximately doubled. 

program from the near-critical result of (37). In figure 5, we depict a series of 
waveforms for water (FiA = 9.2) at 0 = 80" and Re = 8. In figure 6, we show the 
computed neutral and solitary wavespeeds for water at 9 = 0", 51" and 80". The 
wavespeed measurements of Alekseenko et al. and Brauner & Maron (1982) are also 
shown for comparison. The data seem to indicate that, although a family of periodic 
travelling waves exists, the film prefers the extremely long ones near the homoclinic 
line. This explains why the wavelengths of these developed waves cannot be 
estimated by 27c/k, from linear theory, as is shown in figure 1. The reason why waves 
at higher Re tend to be closer to the solitary wave limit is probably because the linear 
growth rate at low Re is too low to allow the final solitary waves to evolve within the 
length of the laboratory channels. This also explains why the vertical film seems to 
reach the solitary wave limit at a lower Re. 

The computed homoclinic locus converges with the Hopf locus at large Re. This is 
not surprising since when Re approaches infinity (or 0(ep2) in the present 
formulation), the Weber number We approaches zero for a given fluid, and the 
normal stress term also vanishes such that (19) reduces to a first-order differential 
equation in the moving coordinate and does not permit any periodic wave solution 
between the Hopf and homoclinic loci. This singular limit is also evident in (30) and 
(31). From (41), this limit occurs at the wave velocity 

clim = 1.69 (42) 

which the neutral wave velocity at large Re. Consequently, the solitary waves and 
periodic waves all approach a limiting velocity at  large Re that is 1.69 times the 
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FIQURE 6. Comparison of experimental data of Alekseenko et al. (0 = 0') and Brauner & Maron 
(0 = 51' and 80') to the computed Hopf (upper) and homoclinic (lower) curves. While the data 
generally lie between the two curves, a shift towards the homoclinic limit is seen at higher Reynolds 
numbers. 0,  A, aqueous glycerin; 0,  aqueous glycerin-ethanol; A, aqueous ethanol; 0,  water. 
These data span a large range of viscosity and surface tension. 

Nusselt velocity. Another quantitative estimate can be made at this high-Re limit. 
Since all solitary waves approach the conjugate flat film both upstream and 
downstream, we can estimate the substrate thickness of the high-Re solitary waves 
from (39), which is valid for all c and Re. Substituting (42) into (39), one obtains 

h, = 0.47 (43) 

or that the substrates are 0.47 as thick as the Nusselt film thickness. No information 
about the amplitude of the wave peak can be obtained. We have already seen in 
figure 6 that (42) is in agreement with the high-Re data of Alekseenko et al. and 
Brauner & Maron (1982). In figure 7, dimensional versions of (42) and (43) are 
compared to the vertical-film data of Chu & Dukler (1974, 1975) for water, which 
were organized by Brauner & Maron (1983). It is interesting to note that average film 
thickness at high Re is often found to be significantly lower than the Nusselt 
thickness h, (Brauner 1987). If the surface is indeed covered by the solitary waves, 
the substrate will occupy a larger portion of the film than the peaks, which are in 
excess of h,, and a small average film thickness will result. Finally, we note that if 
a flat velocity profile was imposed instead of (16), the shape factor r of (14) becomes 
unity and the limiting velocity at high Reynolds number of (42) is now 1.5. This is 
precisely the limiting velocity found by Hwang & Chang (1987) for Dressler's 
shallow-water equation with the empirical dissipation term of Needham & Merkin 
(1984) for turbulent inclined flow. 

5. Period-doubling evolution towards long waves 
In the last two sections, we have constructed a family of periodic waveforms and 

a solitary waveform for any given condition. However, their stability has not been 
determined. In fact, the measurements of Alekseenko et al. and Brauner & Maron 
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FIQURE 7. Comparison of wavespeed and substrate thickness measured by Chu & Dukler for well- 
developed vertical waves to our predictions of (42) and (43) from the solitary wave limit. 0 = 0. 

(1982) suggest that all periodic waves are unstable to subharmonic instability and 
this successive period-doubling selection process eventually yields the solitary 
waveform, which is the preferred waveform, downstream. We confirm this 
observation here by showing that short monochromatic waves near the neutral curve 
are unstable to subharmonic disturbances. Our amplitude equation approach is 
similar to that of Janssen (1986) for period doubling of sheared gravity-capillary 
waves. However, we derive the amplitude equations, which are valid to  third order 
here instead of his second-order equations, via the centre-manifold projection 
technique of Carr (1981). 

We shall carry out our subharmonic stability analysis near the neutral curve, which 
can be far from criticality such that Re = O(E-') as stipulated by our derivation of 
(11) and (19). We begin by reinserting the perturbation parameter e to identify the 
order of each term in (19). This is done by the following transformation which reflects 
the correct order of each variable and parameter : 

Re+Re e-l, We+ We P, Fr+Fr e ,  x+x E - ~ ,  t + t E - ' .  
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The deviation film height and flow rate, 7 and 6, are defined as 

v = h - l ,  [ = q - l ,  ( 4 4 ~ ~  b )  

and are stipulated to  be of O(e) .  Expanding (19) in 7 and 6 and collecting terms up 
to O(e2) ,  the resulting equations, after reabsorbing 8 as before, are 

vt = -629 (45a) 

9 3 3  5 6 
Re Re Re Re Re 

ct = - 2.45, + 1 .27~  + We vXxs +- 7 - - 6-- tan 8v2 +- EZ2 --vzz 

9 6 ) Re Re 
- 2 . 4 & x + 2 . 4 ~ ~ 2 + 2 . ~ q 2 -  8 qq2--q2+-q6+ We7qxxx 

(45b) 
12 9 
Re Re 

+ -v3 - - lq2  - 4.8677, + 2.4q& -2.4r2 E2 + 1.26, qx + 3.Q' q2, 

which can be written as 
U t  = Lu+N(u)  

where u = (7, [)T and the linear stability of the Nusselt flat-film basic state is 
determined by the eigenvalue problem 

where 
Lw, = Aw, (1 = 1, 2) (47a) 

a 
ax 

a 
0 

a, + a, -+ U ,  -+ a3- 
a a 2  a 3  

ax ax, ax3 ax a x 2  
b, + b, -+ b, - 

(47 b )  

( 4 7 4  

Since the coefficients of L are independent of x, one can Fourier transform (47a) in 
x, which is equivalent to  the following normal mode substitution : 

a, = 1.2 - 3 tan B/Re, 

b, = - 3/Re, 

a2 = - 6/Re, a3 = We; 
9 

Re' 
a =- 

b, = - 2.4, b, = 5/Re. 

w, (x)  = q e x p  (ikx). (48) 

A(k)v, = A,(k)v,  (1 = 1, 2), (49) 

After inserting (48) into (47a), one obtains the equivalent eigenvalue problem 

where A(k) = 

a,(k)  = a,-a,k2, u,(k) = a,k-a3k3 

/3,(k) = bo-b ,k2 ,  /3i(k) = b l k .  
The eigenvalues of the complex A are then simply 

A, (k )  = %Pr+iP i -~ (k ) I ,  A,(k) = iLB,+ipi+y(k)I, 
where the complex number y is 

y ( k )  = [ - 4k(ia, - a,) + (pr + ipi)'$ 
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where the normalizing constants d,(k) are 

d,(k) = h:/[h~-ik(ar+iai)]. 

We note that h2(k) is always stable and A,(k) is the eigenvalue that destabilizes a t  the 
neutral curve. 

The adjoint eigenvalue problem to (49) is 

AT(k) 6,(k) = h,(k) 9,(k) (1  = 1, 2) 
such that 

((ar+iai)/hz(k)) (1 = 1, 2) 6, = 
1 

and the orthogonality condition holds : 

fit( k) * 6,(k) = S,, . 
We can now expand u of(46) in terms of the eigenvectors v,,  

(52) 

(53) 

(54) 

u = al,,(t) v,(m+k,) exp (im+k,x) +complex conjugate, (55) 
1, m 

where we have imposed a periodicity of 4xk, such that the fundamental 
k, corresponds to  m = 2 and the subharmonic +ko to m = 1. The wavenumber k, 
is yet unspecified. Substituting (55) into (45) and taking the inner product with 
d, (*k,)exp (-+imk,x), one obtains the amplitude equations for 1 < m < 4:  

% = A ( -  1 i k O  ) ‘11 +‘11a12 a;”1+p21 %2 

-- da21 - h~(+ko) a21 +&I, a12 a:~ + 0(3),  

+‘3l %2 a$1fP41 %3 @2 dt 

“51 ‘23 .TZ +‘el .?l +‘71 a?2 + o(4), (5Ga) 

(56b) dt 

-- ‘iiP - 

-- dii3 - 

%2 +‘12 atl +‘22 all a21 +‘32 a:1u13 +‘42 aT1a23 

+ ~ 5 2 a ~ 2 a 1 ~ + P ~ 2 a , * , a 2 4 + P 7 2 a 1 1 a 1 2 a ~ 1 + ~ ~ 2 a ~ 2 a ~ 2 ~ 0 ( 4 ) ~  (56c) 

2 P O )  a 2 2  + &12 4 1  +0(3)9 ( 5 6 4  
dam - A -- 
dt 

a,, +PIS all a12 + 0(3), 

(56f 1 

(56d 

(56h) 

-- dir - &(ik0) a23 f &I3 all a12 + 0(3), 

-- da14 - A1(2k,) aI4 +PI4 at2 + O(3) ,  

da,, = h2(2k,) a 2 4  + Q14 at2 + 0(3 ) ,  

dt 

dt 
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where superscript * denotes complex conjugate. If the nonlinearity N(u) of (46) is 
expanded to quadratic and cubic terms, 

1 2 2  I 

then the nonlinear interaction coefficients 4, and Qi, can be expressed formally as 

Pml = Pml fil(Zik0) exp ( -iZ$k,x), 

Qml = Pml 6,(l$ko) exp ( -il$ko x), 

where for j = 1, 2 

Pi, = 2D(u:($k0)exp (-i$k,z), uj(ko) exp(ik,z)), 

Pi, = 2D(u:($k0)exp( -i$k,x),u,(k,)exp (ikoz)), 

= 2D(v:(ko)exp ( - ikox) ,  v j ( $ h )  exp (3@0)), 

= 3T(u1($k0) exp (i$k,x), ul(j$ko) exp (Qik, z),u:(j$k,) exp ( -i j iko x ) ) j  

Pi, = D(u,($k,) exp (igk, x), u,($ko) exp (i$k, x)), 
P;,,,, = 2D(u: ($k,)exp ( -$cox), u,(ik,)exp (i$’co z), 

P;+4,2 = 2D(u:(k0) exp (-ifk,x), u,(2k0) exp (i2k0x)), 

p3+6,2 = 6T(ul(ko)exp (ik,x), u,(j$,)exp (i j$k,x),  u:(j$k,)exp ( - i j $k ,x ) ) j .  

If k, is the neutral wavenumber k,, 

A;(kn) = 0, (594  

where the superscript r denotes the real part, then because all wavenumbers larger 
than k, are stable and all wavenumbers smaller than k, are unstable 

A; ($k,) > 0, A;($kn) < 0, A;(m&k,) < 0 ( I  = 1’2, m 2 3). (59b) 

Then by the centre-manifold projection theorem (Carr 1981 ; Guckenheimer & 
Holmes 1983) and the related unstable-centre-manifold theorem (Armbruster, 
Guckenheimer & Holmes 1988), the stable modes can be expanded in terms of the 
neutral mode al, and the unstable mode a,, such that the dynamics of (56) can be 
approximated by two amplitude equations. To leading non-vanishing order, these 
stable modes are second order in the neutral and unstable modes. Consequently, 
second-order resolution suffices in the amplitude equations of the stable modes in 
(56). The centre-manifold expansion is then, from (56), 

p i 4  4 
‘14 - A,(2kn)-2iw’ 

where the frequency iw is simply A,(k,) which is purely imaginary by ( 5 9 ~ ) ’  and we 
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have also simplified the notation for the fundamental and subharmonic modes such 
that a, = a12 and a; = a,,. Substituting (60) into (56a) and (56c), we then obtain the 
projected amplitude equations 

dai 
2 dt = hl(~kn)a;+C,a,ag+c,agag+C3~a,1~a~,  (61 a )  

(61 b )  9 dt = iwa, + D ,  a! + D ,  a; a; + D ,  lai12a,, 

which is valid to O ( 3 )  in laal and lull. The complex coefficients are 

If k, is slightly lower than the neutral wavenumber k, such that k , -k ,  is O ( 2 )  in 
latl and Ja,J, the linear terms in (61) need to be expanded to leading order in k , - k ,  
to yield 

dai 
(63a) 

(63b)  

-- - ( h , ( ~ k , ) + a ; ) a ~ + c , a , a ~ + C ,  la$a;+C31a,12a~, 
dt 

-- dal - (io + a,) a, + D ,  a1 + D2 lull2 a, + D, la;l2 a,, 
dt 

where the complex perturbations to the eigenvalues are 

(Lk )l ( k o - k n ) ,  a, = 2 (kn)(ko-kn). 
ui=@) 2 n 2  (;) 

We are hence perturbing from k, such that k, lies in a small neighbourhood below k, 
and a; and a, are resolved to O(lk,-kk,10.5) by (63). 

Equation (63) can be further simplified by the following moving coordinate 
transformation : 

where the wave frequency is 

the superscripts r and i denoting real and imaginary parts, respectively. Equation 
(63) then reduces to  

a; + a; exp ( -iiGt), a, +al exp ( - idt), (65a, b )  

d = - w - a ~ + D ~ ~ ~ / D ~ ,  (654 

dai 
2 dt = [h , (~k , )+u;+~i]a;+C,a ,a~+C21a;~2a;+C, la ,~2a; ,  (66a) 

(66b)  
da, - ui( 1 + iDi/Di)  a, + D ,  a! + D,  la,I2 a, +D3 bit2 a,. 
dt 
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If the subharmonic amplitude is set to zero in (66), the resulting amplitude 
equation for the fundamental 

(67) - _  da, - a:( 1 + ;O; /D~)  a, +D, la,12 a, 
dt 

is simply the classical Stuart-Landau equation and it determines the bifurcation of 
monochromatic waves near the neutral curve. This is essentially the same Hopf 
bifurcation off the neutral curve (Hopf line) in figure 4 although we use the 
wavenumber k as the bifurcation parameters here instead of the wavevelocity c. It 
is clear from (64) that  this finite-amplitude monochromatic wave which bifurcates 
supercritically a t  the neutral curve k, has an amplitude of 

lull = ( - a ; / ~ $ .  (68) 

Linearizing (67) about (68), one obtains the eigenvalue -a; which implies that  all 
supercritical finite-amplitude monochromatic waves are stable to disturbances of the 
same wavelength. 

Stability of the monochromatic wave to subharmonic disturbances is, however, 
quite different. To study this subharmonic instability we linearize (66) about (68) and 
at = 0. The resulting Jacobians for the subharmonic conjugate pairs are decoupled 
from the Jacobian for the fundamental, which yields the same stable eigenvalue - a; 
for disturbances with the fundamental wavenumber as before. The Jacobian for the 
subharmonic disturbances is 

where 

J = ( J1 " )  
J,* JT ' 

such that the trace and determinant of J are 

trace = J, + J: = h;(ik,) + a! - C; a:/Di, (70a) 

(70b) det = IJ,12-lJ212 = IJ,12-IC1121a,12. 

The necessary and sufficient condition for the waveforms near the neutral curve to  
be stable to subharmonic disturbances is then 

trace < 0, 

det > 0. 

For all inclination angles and Re, which completely specify the system, we find the 
determinant condition to be satisfied near the neutral curve. Consequently, only the 
trace condition is pertinent. From (70a) and the definition of ai in (64), i t  is clear that  
the trace condition is a local approximation of 

A:(&,) < ( C W 3  h:(kLl), (72) 

where k, is a wavenumber slightly lower than the neutral one k,. By definition, 
the fundamental and its subharmonic are unstable, A:(k,) > 0 and h;($k,) > 0. 
Consequently, a sufficient condition for all monochromatic waves to be unstable is 
(C;/D!J < 0. This is not the case, however, for the present system. For positive 
(C;/Di), wavenumbers very near k, should be unstable since the right-hand side of 
(72) is small. However, as k,  departs sufficiently from k,, the growth rate of the 
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FIGURE 8. The band of monochromatic waves unstable to subharmonic instability for water at 
an inclination angle of (a) 51', ( b )  80'. The neutral curve of the mode is also shown. 

fundamental becomes sufficiently large compared to its subharmonic and (72) is 
satisfied. Consequently, there exists a band of periodic waves near the neutral curve, 
whose bandwidth is inversely related to the parameter ( q / D ! J ,  that are unstable to 
subharmonic instability. In figure 8 we have depicted the computed curve for trace 
= 0 from (6Sa). Also depicted is the neutral curve for the mode, A; ( tk , )  = 0. Since 
our analysis assumed that we are sufficiently close to the neutral curve that all modes 
except the k, and +ko modes are stable, our theory fails for the region below the 
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FIGURE 9. The parameter ($,/Or, which measures the bandwidth of monochromatic waves unstable 
to subharmonic instability. Susceptibility to subharmonic instability increeses with more vertical 
inclines. 

neutral curve for the mode. As is evident, for the region above the curve, periodic 
waves with wavenumbers near the neutral curve are unstable to subharmonic 
disturbances. In figure 9, we depict the values of G / D :  as functions of Re for two 
different inclination angles. As is consistent with figures 8 and 9, the more-vertical 
films have a larger band of unstable monochromatic waves and are hence more 
susceptible to the period-doubling phenomenon observed by Brauner & Maron 
(1982). 

6. Conclusion 
Because waves grow so rapidly in wavelength and amplitude from the inlet for 

high-Re films, nonlinear theories must be applied to describe them. Analysis at high 
Re is, however, complicated by the nonlinear inertial terms. These terms present a 
problem even in a linear Orr-Sommerfeld analysis. In spite of recent development in 
computation techniques, the fully nonlinear Navier-Stokes equation with free- 
surface boundary conditions is still not readily tractable. This is particularly true for 
solitary waves which require resolution over a large domain without the possibility 
of imposing periodic boundary conditions. It is hence desirable to simplify the 
equations of motion to reduce the computational effort. The approximate 
Kirmin-Polhausen integral technique is introduced here for exactly this reason. 
Although we have shown by comparing to known results at low Re that there is a 
second-order error introduced by this approximation, the approximation is still a 
welcome one and, as we have demonstrated, provides predictions that agree with 
experimental data with a second-order theory. We have applied modern bifurcation 
techniques here to construct the long finite-amplitude waves near criticality and 
traced them numerically to high Reynolds numbers. The computation yields the 
predictions of (42) and (43) which are verified in figure 7. We have also shown that 
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periodic waves near the neutral curve are unstable to  subharmonic instability, which 
supports the recent experimental observation of Brauner & Maron (1982) of the 
mechanism for evolution of solitary waves. 

This work was partially supported by NSF contract CBT 8451 116, and by ACS- 
PRF contract 20786-AC7. We are also grateful to Professor S.-H. Hwang for his 
derivation of the normal form equations. 

Appendix 
In this Appendix we briefly discuss the deviation of the present integral 

formulation from the long-wave expansion at Re = O( 1) and the advantages offered 
by the integral theory for Re = O(e-'). For Wee2 = 0(1) and F r  = 0(1), a long-wave 
expansion of (1)-(7) of the form 

u = uo+€U1+O(€~), v = v,+sv,+o(s2), p =p,+€pl+o(s2) (A 1) 

yields for Re = O(1) the following equations: 

These equations can be solved with the appropriate leading-order boundary 
conditions to yield 

u, = FrRe cos8(hy-&2), (A 3 4  
vo = - F r  Re cos Oh, h2, (A 3b) 

p, =pa-Wee2h, , -FrsinO(y-h) .  (A 3 4  

This then yields the leading-order flow rate 

qo = 1 u, dy = & FrRe cos Oh3. 

We note by substituting (A 4) into the (A 3a) that this leading-order expression for 
the horizontal velocity profile is exactly that used in the integral boundary-layer 
theory of (16). This similarity ends, however, in the next order. 
0(e1) 

We shall only need the horizontal velocity here, 

-Re-+Re asu 1 aP0 

aY2 ax 

By substituting (A 3) into (A 5) and solving for u1 with the appropriate boundary 
conditions, one obtains 

u1 = R e ( W e e 2 h , , , - F r s i n 8 h , ) ( h y - ~ 2 ) - R e 3 F r 2 c o s 2 B h 2 h , ( ~ 3 - ~ h 2 y )  

+ R e 3 F r 2 ~ o s 2 8 h h , ( ~ 4 - ~ h 3 y ) ,  (A 6) 

q1 = I u1 dy = &Re3 Fr2 cos2 Oh6 h, +$Re We e2 h3 h,,, -$e Fr sin 8h3 h,. (A 7)  

We note from (A 6) that the O(e)-resolution of the horizontal velocity profile 
introduces non-parabolic corrections to the parabolic profile of (A 3). This is hence 

which yields the next-order flow rate 
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inconsistent with the approximation introduced by the integral theory, which always 
assumes a parabolic profile. To be more explicit, we rewrite the averaged equations, 
(13)-( 15), to O(s)  in the original variables of ( 1 ) - ( 7 )  to reveal the correct order of each 
term, 

= We~~hh, , ,+Fr(hcos8-~hh,s in8)-7 , ,  (A 8) 

1 au 3q 
7 ,  =,,,,(y = 0) = - Re h2 ' 

h r= - r u 2 d y ,  q2 0 

where the assumed profile (16) has been invoked. We have solved for the waveforms 
of (A 8) in $$3 and 4. (Actually, a higher-order version was used.) However, one can 
also carry out a perturbation analysis of (A 8) for Re = 0(1) for comparison against 
the 'exact' expressions of (A 4) and (A 7 )  from long-wave expansion. Expanding q, 
r and 7,, 

one obtains from (A 8)-(A l o ) ,  

q = qo+€q1, r= ro+Erl, 7, = 7;+mk, (A 1 1 )  

(A 12) 

(A 13) 

qo = L@e Fr h3 cos 0, 

q1 = -$e3Fr2cos2t9hshX+~9e Wes2h3h,,,--~eFrsin8h3h,. 
Comparing the long-wave expansion result of (A4) and (A7) to the integral 
approximation result of (A 12) and (A 13), one concludes that the assumption of a 
parabolic profile introduces an error in the coefficient of the first term of q1 at low 
Reynolds numbers (i instead of A). This error accounts for the factor discrepancy, 
which is exactly the ratio of the two coefficients in Re, of (24). Note, however, that the 
functional dependence on h and its derivatives is exactly duplicated by the 
approximate integral theory. Consequently, the integral boundary-layer theory is 
correct to leading order for low Re and it introduces an error of at most 20% in the 
next order. 

Both expansions are carried out here for Re = O(1). For Re = O(s-'), the long-wave 
expansions of u in (A 3a)  and (A 6 )  are no longer valid because the nonlinear inertial 
terms are of the same order as the dominant viscous term. The resulting nonlinear 
equations at  every order for the horizontal velocity such as (A 3a)  and (A 5 )  cannot 
be solved explicitly. Similarly, the expansion in s of the integral boundary-layer 
equation of (A 8) in (A 11)  also yields nonlinear equations. However, instead of 
expanding q, one can numerically tackle the integral equation of (A 8 )  directly, which 
was carried out in this manuscript, while numerical solution of the nonlinear 
equations in the long-wave expansion is extremely difficult since it involves the 
solution of a class of equations very similar to the Navier-Stokes equation. This 
numerical advantage of the approximate integral theory is also the motivation 
behind its wide application in airfoil theory. 
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